Montgomery County Community College AST 120/PHY 120/GLG 121 Introduction to Astronomy 4-3-3

COURSE DESCRIPTION:

Introduction to Astronomy is a one-semester college-level course in basic astronomy. The course may be used as a laboratory science elective with basic algebraic applications. The course explores a broad range astronomical concepts and principles in ten major areas: understanding the sky, apparent motions of the planets and the sun, telescopes and accompanying technology, basic structure and behavior of atoms, origin and analysis of light, origin of the solar system, internal structure and behavior of the sun, lifecycle of all stellar classes, origin and structure of galaxies, and cosmology. Throughout the course, emphasis is placed on the implementation of the scientific method, the evidence that astronomers use to support their conclusions, and the importance of astronomy. (Night-time observing is required). This course is subject to a course fee. Refer to http://mc3.edu/adm-fin-aid/paying/tuition/course-fees for current rates.

REQUISITES:

Previous Course Requirements

- ENG 010A Basic Writing, ENG 011 Basic Writing II, <u>or</u> ESL 011 Basic Writing within 5 years with a minimum grade of "C"

Concurrent Course Requirements

- MAT 090 - Fundamentals of Algebra, or MAT 011 - Beginning Algebra, or MAT 011B - Beginning Algebra with Review of Arithmetic with a minimum grade of C within 5 years, or High School Algebra II with a minimum grade of B within 5 years.. May be taken prior or during course.

LEARNING OUTCOMES Upon successful completion of this course, the student will be able to:	LEARNING ACTIVITIES	EVALUATION METHODS
1. Identify the major structures of the universe.	Lecture/Discussion Laboratory Exercises Telescope, Binocular and Other Night Sky Observations Field Trip to Local Planetarium Observational Journal Sketching	Laboratory Exercises Homework Assignments Group Research Paper and Presentation Observational Journal Sketching Examinations

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
2. Explain the role of constellations and the concepts and terminology associated with the celestial sphere.	Lecture/Discussion Laboratory Exercises Telescope, Binocular and Other Night Sky Observations Field Trip to Local Planetarium Observational Journal Sketching	Laboratory Exercises Homework Assignments Observational Journal Sketching Examinations
3. Compare and contrast pre-modern to modern scientific models of the universe.	Lecture/Discussion Laboratory Exercises Telescope, Binocular and Other Night Sky Observations	Laboratory Exercises Homework Assignments Examinations
4. Analyze and compute Kepler's laws of planetary motion and Newton's Laws of Motion.	Lecture/Discussion Laboratory Exercises	Laboratory Exercises Homework Assignments Examinations
5. Describe the operation of optical telescopes and the factors that determine the light-gathering, magnifying, and resolving powers of the telescope.	Lecture/Discussion Laboratory Exercises Telescope, Binocular and Other Night Sky Observations	Laboratory Exercises Homework Assignments Examinations
6. Explain the characteristics and properties of the electromagnetic spectrum and their effects on astronomical equipment and observations.	Lecture/Discussion Laboratory Exercises	Laboratory Exercises Homework Assignments Examinations
7. Describe a simplified model of a typical atom and its fundamental behavior.	Lecture/Discussion Laboratory Exercises	Laboratory Exercises Homework Assignments Examinations
8. Evaluate the interaction of light and matter to determine stellar chemical composition and motion as revealed by the Doppler Effect.	Lecture/Discussion Laboratory Exercises	Laboratory Exercises Homework Assignments Examinations

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS	
9. Compare and contrast the major types of planets in order to develop a theory governing the creation and formation of the solar system.	Lecture/Discussion Laboratory Exercises Telescope, Binocular and Other Night Sky Observations	Laboratory Exercises Homework Assignments Examinations	
10. Describe the internal structure and behavior of the sun as determined by the solar magnetic cycle and nuclear fusion.	Lecture/Discussion Laboratory Exercises Movie/Discussion	Laboratory Exercises Homework Assignments Examinations	
11. Analyze and interpret the Hertzsprung-Russell (H- R) diagram to determine stellar properties such as radius, mass, luminosity, and stage of evolution.	Lecture/Discussion Laboratory Exercises	Laboratory Exercises Homework Assignments Examinations	
12. Define terms such as parallax, parsec, supernova, and white dwarf.	Lecture/Discussion Laboratory Exercises	Laboratory Exercises Homework Assignments Examinations	
13. Outline and explain the theorized process by which stars evolve, from molecular cloud to main sequence to death based upon their mass.	Lecture/Discussion Laboratory Exercises Movie/Discussion	Laboratory Exercises Homework Assignments Examinations	
14. Identify the major morphological classes of galaxies, demonstrate how the distance, diameter, luminosity, and mass of a galaxy are measured, and explain their creation and evolution.	Lecture/Discussion Laboratory Exercises Telescope, Binocular and Other Night Sky Observations	Laboratory Exercises Homework Assignments Examinations	
15. Evaluate and explain current theories regarding the evolution of the universe by understanding current observing methods and analyzing recent and recurrent data.	Lecture/Discussion Laboratory Exercises Movie/Discussion Group Research Paper and Presentation	Laboratory Exercises Homework Assignments Group Research Paper and Presentation Examinations	

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS		
16. Compare and contrast	Lecture/Discussion	Laboratory Exercises		
current theories regarding	Laboratory Exercises	Homework Assignments		
dark matter, dark energy,	Movie/Discussion	Group Research Paper and		
multiple universes and other	Group Research Paper and	Presentation		
topics to evaluate their	Presentation			
validity.				
17. Manipulate algebraic	Lecture/Discussion	Laboratory Exercises		
expressions, including the	Laboratory Exercises	Homework Assignments		
square root and logarithm	Movie/Discussion	Examinations		
functions, to solve for and				
calculate the values of				
specific variables and				
express these answers in				
scientific notation with				
appropriate units.				

At the conclusion of each semester/session, assessment of the learning outcomes will be completed by course faculty using the listed evaluation method(s). Aggregated results will be submitted to the Associate Vice President of Academic Affairs. The benchmark for each learning outcome is that 70% of students will meet or exceed outcome criteria.

SEQUENCE OF TOPICS:

- A. Introduction
- B. Understanding the Night Sky
- C. Origins of Modern Astronomy
- D. Astronomical Tools and Technology
- E. Origin and Properties of Light
- F. Structure and Basic Behavior of Atoms
- F. Structure and Behavior of the Sun
- G. Origin and Properties of the Solar System
- H. Properties of Stars
- I. Evolution of Stars
- J. Neutron Stars, Black Holes and Our Galaxy
- K. Origin and Properties of Galaxies
- L. Cosmology

LEARNING MATERIALS:

Course Textbook:

Seeds, Michael A. (2010). *Horizons, Exploring the Universe* (12th edition). Belmont, CA: Wadsworth Publishing Company.

Laboratory Exercises Textbook:

Ferguson, Dale C. (2001). *Introductory Astronomy Exercises* (2nd edition). Belmont, CA: Wadsworth Publishing Company.

Spangler, Kelli. AST 120 Lab Manual 2011.

Other learning materials may be required and made available directly to the student and/or via the College's Libraries and/or course management system.

COURSE APPROVAL:					
Revised by: Revised by: Revised by:	Dr. Peter J. Bachmann Dr. Peter J. Bachmann Kelli Spangler, Lecturer of Astronomy Kelli Spangler /Provost Compliance Verification:		4/1997 Summer 2004 2/10/2009 Spring 2011		
Interim VPAA/	Victoria L. Bastecki-Perez, Ed.D.	Date:	5/17/2011		
•	Kelli Spangler t or designee Compliance Verification: Victoria L. Bastecki-Perez, Ed.D.	Date:	6/2012		
		Date:	6/19/2012		
	Kelli Spangler t or designee Compliance Verification: Victoria L. Bastecki-Perez, Ed.D.	Date:	8/2013		
		Date:	8/7/2013		
•	Debbie Dalrymple t or designee Compliance Verification: Victoria L. Bastecki-Perez, Ed.D.	Date:	11/13/2017		
		Date:	12/18/2017		
	Kelli Spangler gnee Compliance Verification:	Date: Date	6/7/2023 : 6/7/2023		

Charfweet

This course is consistent with Montgomery County Community College's mission. It was developed, approved and will be delivered in full compliance with the policies and procedures established by the College.